skip to main content


Search for: All records

Creators/Authors contains: "Ingram, Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present fundamental scaling relationships between properties of the optical/UV light curves of tidal disruption events (TDEs) and the mass of the black hole that disrupted the star. We have uncovered these relations from the late-time emission of TDEs. Using a sample of 63 optically selected TDEs, the latest catalogue to date, we observed flattening of the early-time emission into a near-constant late-time plateau for at least two-thirds of our sources. Compared to other properties of the TDE light curves (e.g. peak luminosity or decay rate) the plateau luminosity shows the tightest correlation with the total mass of host galaxy (p-value of 2 × 10−6, with a residual scatter of 0.3 dex). Physically this plateau stems from the presence of an accretion flow. We demonstrate theoretically and numerically that the amplitude of this plateau emission is strongly correlated with black hole mass. By simulating a large population (N = 106) of TDEs, we determine a plateau luminosity-black hole mass scaling relationship well described by $\log _{10} \left({{M_{\bullet }}/M_\odot }\right) = 1.50 \log _{10} \left({ L_{\rm plat}}/10^{43} \, {\rm erg\, s^{-1}}\right) + 9.0$ (here Lplat is measured at 6 × 1014 Hz in the rest frame). The observed plateau luminosities of TDEs and black hole masses in our large sample are in excellent agreement with this simulation. Using the black hole mass predicted from the observed TDE plateau luminosity, we reproduce the well-known scaling relations between black hole mass and galaxy velocity dispersion. The large black hole masses of 10 of the TDEs in our sample allow us to provide constraints on their black hole spins, favouring rapidly rotating black holes. Finally, we also discover two significant correlations between early time properties of optical TDE light curves (the g-band peak luminosity and radiated energy) and the TDEs black hole mass.

     
    more » « less
  2. ABSTRACT

    We present a straightforward argument for why the luminous, hard state of black hole X-ray binaries (BHXRBs) cannot always be associated with a magnetically arrested accretion disc (MAD). It relies on three core premises: (1) that the type-C quasi-periodic oscillation (QPO) is best explained by Lense–Thirring (LT) precession of a tilted, inner, hot flow; (2) that observed optical and infrared (IR) QPOs with the same or lower frequency as the type-C QPO suggest the jet, too, must precess in these systems; and (3) that numerical simulations of MADs show that their strong magnetic fields promote alignment of the disc with the black hole and, thereby, suppress LT precession. If all three premises hold true, then, at least whenever the optical and IR QPOs are observed alongside the type-C QPO, these systems cannot be in the MAD state. Extending the argument further, if the type-C QPO is always associated with LT precession, then it would rule out MADs anytime this timing feature is seen, which covers nearly all BHXRBs when they are in the luminous, hard and hard-intermediate states.

     
    more » « less
  3. Free, publicly-accessible full text available July 6, 2024
  4. Context. After about 16 years since its first outburst, the transient neutron star low-mass X-ray binary XTE J1701−462 turned on again in September 2022, allowing for the first study of its X-ray polarimetric characteristics by a dedicated observing program with the Imaging X-ray Polarimeter Explorer (IXPE). Aims. Polarimetric studies of XTE J1701−462 have been expected to improve our understanding of accreting weakly magnetized neutron stars, in particular, the physics and the geometry of the hot inner regions close to the compact object. Methods. The IXPE data of two triggered observations were analyzed using time-resolved spectroscopic and polarimetric techniques, following the source along its Z -track of the color–color diagram. Results. During the first pointing on 2022 September 29, an average 2–8 keV polarization degree of (4.6 ± 0.4)% was measured, the highest value found up to now for this class of sources. Conversely, only a ∼0.6% average degree was obtained during the second pointing ten days later. Conclusions. The polarimetric signal appears to be strictly related to the higher energy blackbody component associated with the boundary layer (BL) emission and its reflection from the inner accretion disk, and it is as strong as 6.1% and 1.2% (> 95% significant) above 3–4 keV for the two measurements, respectively. The variable polarimetric signal is apparently related to the spectral characteristics of XTE J1701−462, which is the strongest when the source was in the horizontal branch of its Z -track and the weakest in the normal branch. These IXPE results provide new important observational constraints on the physical models and geometry of the Z -sources. Here, we discuss the possible reasons for the presence of strong and variable polarization among these sources. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  5. x-ray polarization measurements determine the geometric arrangement of hot material accreting onto a black hole. 
    more » « less
  6. null (Ed.)